TEST NAME: 8.G.1,2,3,4,5 Review

TEST ID: 1016722

GRADE: 08 - Eighth Grade

SUBJECT: Mathematics

TEST CATEGORY: Shared Classroom Assessments

04/15/16, 8.G.1,2,3,4,5 Review

Student:		
Class:		
Date:		

- 1. Triangle XYZ with vertices X(5,7), Y(8,3), and Z(2,3) is reflected over the y-axis and translated up 4 units to form triangle X'Y'Z'. What is the length of segment Y'Z'?
 - A 2 units
 - B. 4 units
 - c. 6 units
 - D. 10 units

^{2.} Parallelogram *QRST*, shown below, is rotated 135° clockwise about the point (5,4) and reflected across the *x*-axis. Which statement about the resulting figure, Q'R'S'T', is true?

- A $R'S' \# \overline{Q'T'}$ and $\overline{Q'R'} \# \overline{S'T'}$
- B. $R'S' \parallel \overline{Q'T'}$ and $\overline{Q'R'} \parallel \overline{S'T'}$
- C. R'S' # Q'T' and Q'R' || S'T'
- D. $R'S' \parallel \overline{Q'T'}$ and $\overline{Q'R'} \parallel \overline{S'T'}$

 $^{3.}$ The square below is translated to the left and reflected across the y-axis.

Which statement about the resulting figure is true?

- A It is congruent to the original square.
- B. It is now a rectangle that is not a square.
- C. It is similar but larger than the original square.
- D. It is similar but smaller than the original square.

4. The trapezoid in figure A is transformed to trapezoid A' as shown below.

What sequence of transformations will prove them congruent?

- A Reflection about the y-axis and rotation of 90° counterclockwise about the origin.
- B. Reflection about the x-axis and rotation of 90° counterclockwise about the origin.
- C. Reflection about the *y*-axis and rotation of 180° counterclockwise about the origin.
- P. Reflection about the x-axis and rotation of 180° counterclockwise about the origin.
- 5. Which transformation could NOT be used to prove that two circles are congruent to one another?
 - A a dilation with a scale factor of 2
 - B. a dilation with a scale factor of 1
 - c. a reflection
 - D. a rotation

- 6. Triangle *ABC* is rotated 95° and then translated 3 units to the left to form triangle *DEF*. Which statement about the triangles **must** be true?
 - A Triangle DEF will be larger than triangle ABC.
 - B. Triangle *DEF* will be congruent to triangle *ABC*.
 - C. Triangle DEF will have an angle that is equal to 95°.
 - D. Triangle *DEF* will be similar, but not congruent, to triangle *ABC*.
- 7. Which set of transformations could be applied to figure A to prove that it is congruent to figure A'?

- A reflection across the y-axis and translation down 2 units
- B. reflection across the y-axis and translation down 6 units
- ^{C.} rotation of 180° about the origin, followed by a reflection across the x-axis
- D. rotation of 90° clockwise about the origin, followed by a reflection across the *x*-axis
- 8. Triangle FGH was rotated 90° counterclockwise about the origin. The image has vertices located at $F'(^-1, ^-3)$, $G'(2, ^-2)$, $H'(2, ^-4)$. What are the coordinates of F?
 - A (-3, 1)
 - B. (⁻1, 3)
 - c. (1, -3)
 - D. (3, ⁻1)

- 9. Point W is located at (7, 3) on a coordinate plane. Point W is translated 2 units to the left and 3 units up. What are the coordinates of the image point W'?
 - A (10, 1)
 - B. (9, 0)
 - c. (5, 6)
 - D. (4, 1)
- ^{10.} Triangle *EFG* has vertices $E(^3, 4)$, $F(^3, ^2)$, and $G(5, ^2)$. After a dilation is applied, the image triangle E'F'G' has vertices $E'(^9, 12)$, $F'(^9, ^6)$, and $G'(15, ^6)$. What is the scale factor for the dilation?
 - A 2
 - B. 3
 - C. 4
 - D. **5**
- 11. The vertices of a triangle are located at (0, 4), (-2, 0), and (1, 0). The triangle will be dilated by a scale factor of 0.5. What will be the coordinates of the vertices of the image triangle?
 - A (0.5, 2), (⁻1, 0), (0, 0)
 - B. $(0, 2), (^{-}1, 0), (0.5, 0)$
 - C. (0, 2), (1, 0), (5, 0)
 - D. (0, 8), (-4, 0), (2, 0)

12. Triangle *JKL* is graphed below.

- The triangle will be translated 8 units to the right and 6 units down. What will be the coordinates of the image point J'?
- A(2, -6)
- B. (4, ⁻4)
- c. (6, -4)
- D. (6, ⁻8)
- ^{13.} Triangle *EFG* has vertices at E(0, 0), F(0, 3), and G(-2, 0). The triangle will be rotated 270° counterclockwise about the origin. What will be the coordinates of the triangle E'F'G'?
 - A $E'(0, 0), F'(^{-}3, 0), G'(0, ^{-}2)$
 - B. E'(0, 0), F'(3, 0), G'(0, 2)
 - ^{C.} E'(0, 0), F'(0, 3), G'(2, 0)
 - D. E'(0, 0), F'(3, 0), G'(0, -2)

^{14.} Triangle *KLM* is shown below.

Which type of transformation would result in an image triangle with vertices K'(5, 2), L'(1, 5), and M'(1, 2)?

- A reflection over the *y*-axis
- B. reflection over the x-axis
- c. rotation
- D. translation

15. Rectangle *EFGH* will be rotated 90° clockwise about the origin.

- What will be the coordinates of the image point G'?
- A (⁻2, ⁻6)
- B. (⁻2, 6)
- c. (6, ⁻2)
- D. (6, 2)

^{16.} Which sequence of transformations can be used to prove that the rectangle in figure *A* is similar to the rectangle in figure *B* in the coordinate plane below?

- A dilation by a scale factor of 2 from the origin and translation 4 units to the left
- B. dilation by a scale factor of 2 from the origin and reflection across the y-axis
- c. dilation by a scale factor of 0.5 from the origin and translation 2 units to the right
- D. dilation by a scale factor of 0.5 from the origin and reflection across the *y*-axis

 17 . A dilation and a rotation of figure B resulted in figure B' shown below.

Which of these statements is **true**?

- A Figure B' is similar and congruent to figure B.
- B. Figure B'is similar but not congruent to figure B.
- C. Figure B' is congruent but not similar to figure B.
- D. Figure B' is neither similar nor congruent to figure B.

 $^{18.}$ Triangle PQR is shown below.

What is the value of x?

- A 12
- B. 13
- C. 25
- D. 40

^{19.} Triangle *JKL* is shown below.

What is the measure of angle KJL?

- A 15°
- B. 20°
- C. 35°
- D. 60°

 20 . Lines v and w are parallel.

What is the value of x?

- A. 6
- B. **8**
- c. 30
- D. 39

^{21.} In the figure below, lines j and k are parallel.

What is the value of *x*?

- A. 5
- B. 13
- C. 18
- D. 23

^{22.} In the figure below, what is the measure of $\angle x$?

- A 80°
- в. 90°
- C. 100°
- D. 110°

^{23.} Triangle *PQR* is shown below.

What is the measure of $\angle QRS$?

- A 76°
- B. 104°
- C. 118°
- D. 138°

^{24.} Triangle *NPQ* is shown below.

What is the measure of $\angle NQP$?

- A 22°
- B. 23°
- C. 24°
- D. 26°

$^{25.}$ Line F is parallel to line H.

What is the value of x?

- A 15
- B. 20
- C. 25
- D. 30